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K-means Clustering
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Clustering Problem (Fuzzy Clustering)
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Fuzzy c-means
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Fuzzy c-means
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Fuzzy c-means
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Gaussian Mixture Models (GMMs)
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GMM: 1-D Example
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GMM: 2-D Example
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GMM: 2-D Example

• GMM distribution
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Mixture Models: definition
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How to Fit GMM?
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ML for GMM: Alternating optimization
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Mixture models: discrete latent variables 
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EM algorithm

• An iterative algorithm in which each iteration is 
guaranteed to improve the log-likelihood function

• General algorithm for finding ML estimation when 
the data is incomplete (missing or unobserved 
data). 

• EM finds the maximum likelihood parameters in cases 
where the models involve unobserved variables 𝑍 in 
addition to unknown parameters 𝜽 and known data 
observations 𝑋.
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EM for GMM
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EM for GMM
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EM & GMM: example
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EM & GMM: Example
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Example
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Example
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Example
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Example
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Local Minima
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Local Minima
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K-means and EM on GMM

1. Decide on the number of clusters
2. Initialize the cluster centers randomly

3. Decide the assignment of data to clusters 
       (data are assigned to the nearest clusters)

4. Re-estimate the cluster centers based on
        the above assignments

5. Repeat 3 and 4 until convergence

26

3. Decide the assignment of data to 
clusters (soft assignment)

4. Re-estimate the cluster centers 
based on the soft assignments
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EM+GMM vs. k-means

• k-means:
• It is not probabilistic
• Has fewer parameters (and faster)
• Limited by the underlying assumption of spherical clusters

• can be extended to use covariance – get “hard EM” (ellipsoidal 
k-means).

• Both EM and k-means depend on initialization 
• getting stuck in local optima

• EM+GMM has more local minima 
• Useful trick: first run k-means and then use its result to initialize EM.
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How many clusters?
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Gaussian Mixture Models 

• Advantages
• Optimizes data likelihood 
• Learns a generative model of data

• can generate new data according to the learned model 
• Relatively efficient: linear in the number of data, number 

of clusters, number of iterations, and quadratic in the 
number of dimensions

• Weakness
• Often terminates at a local optimum. 

• Initialization is important. 
• Not suitable to discover clusters with non-convex 

shapes
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Incomplete log likelihood
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EM Algorithm
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EM algorithm intuition

• When learning with hidden variables, we are trying to 
solve two problems at once: 
• hypothesizing values for the unobserved variables in each 

data sample
• learning the parameters

• Each of these tasks is fairly easy when we have the 
solution to the other. 

• Given complete data, we have the statistics, and we can estimate 
parameters using the MLE formulas. 

• Conversely, computing probability of missing data given the 
parameters is a probabilistic inference problem

32 Gaussian Mixture Models & EM



Sharif University
of Technologytitle3333
Sharif University
of Technologytitle3333

EM algorithm: general
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Expectation step (E-step): Given the current parameters, find soft 
completion of data using probabilistic inference

Maximization step (M-step): Treat the soft completed data as if it 
were observed and learn a new set of parameters  
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EM theoretical foundation:
Objective function
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EM theoretical foundation: 
Algorithm in general form
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EM algorithm: general
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EM theoretical analysis 
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Jensen’s inequality
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EM theoretical foundation:
E-step
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EM theoretical foundation:
E-step
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EM theoretical foundation:
M-step
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EM algorithm: illustration
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EM Convergence

• Objective function is bounded (under mild assumptions), 
so EM is guaranteed to converge to a stationary point 
of log likelihood.

• EM is guaranteed to find a stationary point of the log 
likelihood

• A stationary point for the objective of EM is also a stationary 
point of log-likelihood 

• However, it can be a local maximum or a saddle point
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EM advantages and disadvantages 

• Some good things about EM: 
• no learning rate (step-size) parameter
• automatically enforces parameter constraints
• very fast for low dimensions
• each iteration is guaranteed to improve likelihood

• Some bad things about EM: 
• can get stuck in local minima
• can be slower than some other iterative gradient-based 

methods
• requires expensive inference step (E-step)
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EM for GMM : E step details
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EM for GMM
M step: details
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EM for GMM
M step: details
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EM for GMM
M step: details
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Semi-supervised learning
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Semi-supervised learning: example
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Zhu, Semi-Supervised Learning Tutorial, ICML, 2007. 
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Zhu, Semi-Supervised Learning Tutorial, ICML, 2007. 
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Semi-supervised generative model
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Resource

• C. Bishop, “Pattern Recognition and Machine 
Learning”, Chapter 9.
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Example
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EM for GMM
M step: details
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Lagrange 
multiplier
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EM algorithm: general
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KL divergence
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K-means algorithm
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