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K-means Clustering

o Input: a set x(1, ..., xN) of data points (in a d-dim feature
space) and an integer K

» Output: a set of K representatives ¢,C,, ..., Cx € R% as the
cluster representatives

data points are assigned to the clusters according to their distances to
€, Cy ..., Ck
Each data is assigned to the cluster whose representative is nearest to it

» Objective: choose €y, C, ..., Ci to minimize:
N

min_d?(x®, ¢))
JE1l,...K
=1
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Clustering Problem (Fuzzy Clustering)

» Uy, Uy, ..., U, are membership function u;: X' — [0,1]
Vi=1,.k 0<XIN u(xP)<N
Vi=1,..,N, Y u(x®)=1

Fuzzy (soft) clustering: u; (x) to what degree x belongs to cluster C;
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Fuzzy c-means

» Cost function:

k
JU.p) = Zj=1 Ziecj(uij)qd(x(i)' ")

V_] = 1,...k, 0< Z?’zluij <N
Vi=1,..,N, ¥ _ju;=1
V_] — 1, k,Vl - 1, ...,N,ul-j (S [0,1]

» q is a fuzziness parameter (usually 1 < g < 2)

Fuzzy clustering becomes crisp clustering when g — 1
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Fuzzy c-means

% Minimization of the cost function:

aJ(U, ) 1
auij =0= uij = d(x(l) u ) 1/q
']
=1 (d(x(‘) ﬂz))
JU.m _ z g 0d(xW, p;) _ 0
Ou, T
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Fuzzy c-means

Select k random points p4(0), u,(0), ... ;. (0)} as clusters’ initial
centroids.
t<0

Repeat until a stopping criterion is reached:
for i=1 ton do

for =1 tok do

u;j(t) = -

. 1
e (D) /4
=1\ ax py (0))

for j=1 to k do
X u?j (£)x®

t—t+1

- Clustering
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Gaussian Mixture Models (GMMs)

» Gaussian Mixture Models:p(x|Mj; 0]-)~N(Ilj,2j)
K

p() = ) 1N (xlw;, 5))

K

» Fitting the Gaussian mixture model
: i 01
Input: data points {x }i=1

Goal: find the parameters of GMM (m;, u;, 2, j = 1, ..., K)
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GMM: 1-D Example
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GMM: 2-D Example

k=3
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GMM: 2-D Example

* GMM distribution

n Gaussian Mixture Models & EM

“= T oS
21 = lo.s 4 ]
1t1 - 0.6
ny = [01 —04]
2=y 1
77:2 == 0.25
U3 = [g %]
23 [1 1
7T3 - 0.15
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Mixture Models: definition

» Mixture models: Linear supper-position of mixtures or
components

K
p(x|6) =) 1P(z =N p(x|z=j;0,)
]:
25'(=1P(Z =j)=1
P(z = j): the prior probability of j-th mixture
6;: the parameters of j-th mixture

p(x|z =j;0 j): the probability of x according to j-th mixture

» Framework for finding more complex probability distributions
» Goal: estimate p(x|0) E.g., Multi-modal density estimation
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How to Fit GMM?

= [ (N)
* In order to maximize log likelihood: X ={x®, .., 20}

N K

InpX|m,u x2) = Zln anN(x(i)luj: X))

i=1 j=1

* The sum over components appears inside the log and there is no closed form solution
for maximum likelihood.

Olnp(X|mp5) _

opy
dInp(X|m, p, X)
=0
0% k=1,..,K
OlnpX|m,pu,X) + AT mj — 1) .y
aTl'k B
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ML for GMM: Alternating optimization

® 1 ZN nkN(x(i)luk; Ek) i)

He = 5~ , X
Ny AN (xOlu;, Z)

1<V T NEO|p, 2 . .
> | s KR Oy ) (x O gy )T

"\ i=1Z] 17T]N(x(l)|u]; ])
T, = N

ﬂkN (x| g, Zx)
KimN (xOu;, Z))

Il
M -

=1

dloglA™'| oxT Ax

A1 0A

= XX
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Mixture models: discrete latent variables

» z:latent or hidden variable

specifies the mixture component

» P(zj =1) =

K —
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EM algorithm

* An iterative algorithm in which each iteration is
guaranteed to improve the log-likelihood function

* General algorithm for finding ML estimation when
the data is incomplete (missing or unobserved
data).

* EM finds the maximum likelihood parameters in cases
where the models involve unobserved variables Z in

addition to unknown parameters 0 and known data
observations X.
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EM for GMM

w |nitialize 8, k=1, ..., K
» Estep:i=1,..,N,j=1,..,K

, . , P (x(l)|z(l) = 1) P(z" = )
)’} =P (ZJ,(l) = 1|x(1)) = S, P (x(l)lzl(ci) _ )P EZ i) _ )
» MStep:j=1,.., K

Update parameters 6;

= [m p 2]
» Repeat E and M steps until convergence 2z is a one-hot vector shows the
mixture from which x® is generated
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EM for GMM

* Initialize Kk, Ek, Tk k= 1,..,K
« Estep:i=1,..,N,j=1,..,K

old (D)y,0ld yold
N(x P
.y_ — P( () — 1|x(l) eold) ( “l )

N GO g, 2

* MStep:j=1,.., K
o Zl 1}/] x(l)

K =
A Yj
E}lew — Z % (x(L) unew) (x(l) uneW)T
1 y] =1
new __ i= 1YJ
N 0 =[mu Xl
® -
* Repeat E and M steps until convergence z"’ €{12,..., K} shows the mixture
from which x(® is generated
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EM & GMM: example

[Bishop]
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EM & GMM:

[\

Example

W]

W]
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-2 0 (c) 2
L =20 s
.y'@"*
. .:}‘J‘
g0 B,
3-
e lo‘
.
-2 0 (f) 2
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Example

Iteration 1

The cluster
means are
randomly
assigned

et Tikelihog

i =-131T8940084091007

0.327580645161290

[Gausshix =] RingPts | Randompts | clearPts | initkemels |[3 =] [Em1 sten 3]

title
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Example

ffean Likelihood =-12.501213295068318
L]

Iteration 2

L]
|GaussMix 'I RlngPtsl RandomPts | ClearPts Inm<emels||3 v||EM1Step 'I

title
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Example

Iteration 5

Mean Likelihood =\ 1.879896828880106

[Gausshix =] RingPts | Randompts | clearPts | initkemels |[3 =] [Em 1 sten ]

title
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Example

Mean Likelihood =-11.13453288 X 6779

Iteration 25

[GaussMix =] RingPts | RandomPts | Clearpts | Initkemels | [3 =] [EMston 5]
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LLocal Minima
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LLocal Minima

ul =[0.36 —4.09] 8r
0.89 0.26
0.26 0.83
m, = 0.249 4l
=[3.25 2.09] 1
s _ [2 .23 1.08] il
1.09 141
m, = 0.146 2}
-2.11 3.36] Gl
1 12 0. 61]
0.61 3.61
1 L Il L 1 Il | My = 0-604 - L L L
B -4 2 0 2 4 B g e & 2 0
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u =[145 -1.81]

330 4.76 ]

1= 476 10.01
m, = 0.392

u, =[-2.20 3.16]

_ 7130 1.10

271110 280
7, = 0.429

us =[—1.88 3.74]
5y =

583 —-0.82

-0.82 5.83
m3 = 0.178
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K-means and EM on GMM

1.  Decide on the number of clusters
2. Initialize the cluster centers randomly
3. Decide the assignment of data to clusters 3. Decide the assignment of data to
(data are assigned to the nearest clusters) clusters (soft assignment)
: 4, Re-estimate the cluster centers
4. Re-estimate the cluster centers based on

based on the soft assignments

the above assignments /

5.  Repeat 3 and 4 until convergence
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EM+GMM vs. k-means

* k-means:
* It is not probabilistic
* Has fewer parameters (and faster)

* Limited by the underlying assumption of spherical clusters

* can be extended to use covariance — get “hard EM” (ellipsoidal
k-means).

* Both EM and k-means depend on initialization

e getting stuck in local optima
e EM+GMM has more local minima
o Useful trick: first run k-means and then use its result to initialize EM.
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How many clusters?

» Cross validation to determine the correct number of
classes

* Likelihood of the left out data to determine which model
(number of clusters) is more accurate

1_[ z p(x(")|9k)nk

neValidation k=1
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Gaussian Mixture Models

* Advantages
* Optimizes data likelihood
* Learns a generative model of data
* can generate new data according to the learned model

* Relatively efficient: linear in the number of data, number
of clusters, number of iterations, and quadratic in the
number of dimensions

* Weakness
* Often terminates at a local optimum.
* Initialization is important.

* Not suitable to discover clusters with non-convex
shapes
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Incomplete log likelihood

» Complete log likelihood

Maximizing likelihood (i.e., log P(X,Y|0)) for labeled data is
straightforward

» Incomplete log likelihood
With Z unobserved, our objective becomes the log of a
marginal probability log P(X|0) = log )., P(X,Z|0)
This objective will not decouple and we use EM algorithm to solve it
X ={xW, .., xM}
Z ={zW, ..., z(N}
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EM Algorithm

[ ]
» Assumptions: X (observed or known variables), Z (unobserved or latent

variables), X come from a specific model with unknown parameters 6

If Z is relevant to X (in any way), we can hope to extract information about it
from X assuming a specific parametric model on the data.

» Steps:
Initialization: Initialize the unknown parameters 6

Iterate the following steps, until convergence:

Expectation step: Find the probability of unobserved variables given the current
parameters estimates and the observed data.

Maximization step: from the observed data and the probability of the
unobserved data find the most likely parameters (a better estimate for the
parameters).

Sharif University
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EM algorithm intuition

* When learning with hidden variables, we are trying to
solve two problems at once:

* hypothesizing values for the unobserved variables in each
data sample

* learning the parameters

* Each of these tasks is fairly easy when we have the
solution to the other.

* Given complete data, we have the statistics, and we can estimate
parameters using the MLE formulas.

* Conversely, computing probability of missing data given the
parameters is a probabilistic inference problem
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EM algorithm: general

X: observed variables Expectation step (E-step): Given the current parameters, find soft

Z:unobserved variables

completion of data using probabilistic inference

0: parameters Maximization step (M-step): Treat the soft completed data as if it

were observed and learn a new set of parameters

Choose an initial setting 8%t = 0

Iterate until convergence:
E Step: Use X and current ¢ to calculate P(Z|X, 6%)
M Step: 8°1 = argmax E; pezixetllogp(X, Z|0)]

t—t+1
expectation of the log-likelihood evaluated using

the current estimate for the parameters 6

E; p(zix,0019) 108D (X, Z|6)]

=YzP(Z|X,0°)xlogp(X,Z|6)
Sharif University
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EM theoretical foundation:

Objective function

X ={%Y, ., %"}
Z={z1, . . 2"}

£(8;X) = logP(X|6) = log Y P(X,Z|6)
‘¢ Z

~ -

Jensen
inequality
- P(X,Z|0) P(X,Z|0)
FI6,0)

F|0, Q] is a lower bound on £(0; X)

EM maximizes F [0, Q]

Sharif University
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EM theoretical foundation:

Algorithm in general form

» EM is a coordinate ascent algorithm on F|[6, Q]. In the t-
th iteration,
E-step: maximize F[0, Q] w.r.t. Q

Q¢ = argmax F[6¢, Q]
Q
M-step:

0'*! = argmax F|[0, Q]
0

We will show that each iteration improves the log-likelihood

Sharif University
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EM algorithm: general

» EM: general procedure for learning from partly observed data

* Define: Q(6; 8°'Y) =E;_p 7 x 6010y [log p(X, Z|60)]

=Y,P(Z|X,0°Vxlogp(X,Z|0)

expectation of the log-likelihood evaluated using

the current estimate for the parameters §°'4

Choose an initial setting 8°'4 = @°

Iterate until convergence:
E Step: Use X and current 8°9 to calculate P(Z|X, 8°'9)
M Step: 8°¢W = argmax Q(0; 8°'%)
6

aold «— Qnew

Sharif University
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EM theoretical analysis

« What is the underlying theory for the use of the expected
complete log likelihood in the M-step!?

EP(Z X,GOld) [logP(X,ZIB)]

* Now, we show that maximizing this function also maximizes
the likelihood

Sharif University
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Jensen’s inequality

» If f is a convex function

E[f(x)] = f(E[x])

» If f is a concave function

E[f(0)] = f(Elx])

Sharif University
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EM theoretical foundation:

E-step

Qt = P(Z|X,0") = Q! = argmax F[6¢,Q]
Q

Proof:
P(X,Z|6Y)
P(Z|X, 6%

= 2 P(Z|X,0%)log P(X|0%) =logP(X|6%) = £(8%; X)
Z

F[0¢,P(Z|X, 8%)] = Z P(Z|X,6%) log
VA

Sharif University
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EM theoretical foundation:

E-step
. Qt = P(Z|X,0") = Q! = argmax F[6¢, Q]
Q
Proof:
- P(X,Z|6%)
F[6%, P(Z|X,00)] = ZZ: P(ZIX, 0" log s o o

- Z P(Z|X,0%)log P(X|6%) = log P(X|6%) = £(8%;X)
Z

» F[0,Q] is a lower bound on £(0;X). Thus, F[O%,Q] has been
maximized by setting Q to P(Z|X, 6%):

F[6%,P(Z|X,0%)] = £(6%; X)

= P(Z|X,0") = argmax F[6%, Q]
Q

Sharif University
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EM theoretical foundation:

M-step

e M-step can be equivalently viewed as maximizing the expected
complete log-likelihood:

6'*! = argmax F (6, Q"] = argmax E ,:[log P(X, Z|0)]
0 0

Proof:

P(X,Z|0)
Q*(2)

= Z Qt(Z)log P(X,Z|0) — Z Q%(Z)10g Q" (2)
= F16,Q"] = Eqellog P(X, Z16)] + H(Q"(2)

FI6,0'1= ) Q“(2)log
Z

Independent of @
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of Technology

Gaussian Mixture Models & EM




EM algorithm: illustration

£(0;X)

Ot 0t+1

[Bishop]
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EM iteration increases £(0; X)

’ (0% X) = E,:[log P(X,Z|6%)] + H(Q"(2))
£(0"; X) 2 E ¢ [log P(X, Z|6 )] + H(Q'(2))

20" X) — £(8%5X) = Ec[log P(X,Z|6° )] — E ¢ [log P(X, Z|6")]

Sharif University
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£(8% X) = Eye[logP(X,Z[6%)] + H(Q"(2))

£(0°° 1 X) = Epe[logP(X,Z|6°" )] + H(Q'(2))
£(0""1;X) — £(0%X) = Eye[log P(X, Z|60°1)] — E yc[log P(X, Z|6")]

Moreover, we have:
gttt = arggnaxEQt[logP(X,ZIH)]

= E,t[logP(X,Z|6°"")] = E,:[log P(X, Z|6")]
= L0 X) —2(05X) >0

EM is increasing the log likelihood constantly
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EM Convergence

* Objective function is bounded (under mild assumptions),
so EM is guaranteed to converge to a stationary point
of log likelihood.

* EM is guaranteed to find a stationary point of the log
likelihood

* A stationary point for the objective of EM is also a stationary
point of log-likelihood

* However, it can be a local maximum or a saddle point
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EM advantages and disadvantages

* Some good things about EM:
* no learning rate (step-size) parameter
* automatically enforces parameter constraints
* very fast for low dimensions
* each iteration is guaranteed to improve likelihood

* Some bad things about EM:
* can get stuck in local minima

* can be slower than some other iterative gradient-based
methods

* requires expensive inference step (E-step)

Sharif University
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EM for GMM : E step details

3 P(x,z|0) B P(x|z,0)P(z|0) 3
Pl ) = S b e 218) ~ 3, P(x|z,6)P(zl0) =i

m; N(x|p;, %5 )
0)(z=1) = P(3 = 1}x,6) = il
k=1T0 N (x|, 2y )
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EM for GMM

M step: details

N - -
p(X,Z|0) = p(x®,z1]0)
i=1

N - - -
=\ ‘ p(x®|2®, 0)p (2 |m)
i1 o
: ! ()
=‘ ‘ ‘ ‘N(x(l)lﬂjyzj )7
i=1 j=1

0=[mult

geold — [nold,uold, Zold]
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EM for GMM

M step: details

* p(X,Z|6) = l_[N p(x®,z1)|9) = I.le(x(i)|z(i), 0)p(zV|m)
i= K i=1
= N(x(i)|uj ) &j )zj njzf('i) 6 = [m,p, X]
l=1 j= =1 gold = [gold yold, yold]
N K
logp(X,Z|0) = ZZ (){logN(x(‘)|yJ ) ) + logn]}
i=1 j=1

- IL X, §°14) llogp(X,Z]0)] =
N

ZZ{:" £0)0,014) [ (l)] {log]\f(x(")ht] ,Z; )+ logm;}

M

Yj
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EM for GMM

M step: details

Q(6; 6°'Y) =E;._p 75601y [log p(X, Z|6)]
= 251 X1 vi{log v (x|, , 55 ) + logm}

0Q(6; 6°'%) Mavjx®
0 =0= Rj = N i
Hj 2i=1Y]
0Q(0;6°4) 1 N .
—0> % = Z i ®—p YO )T
T = Sy D OB )
. gold k ]
o(e@em HaGltm-1) 3ty
aﬂ'j J N
\
Lagrange multiplier due to
the constraint Zf‘:l mi=1
Gaussian Mixture Models & EM irf"al'::l:fwzilvozr;ity




Semi-supervised learning

» Supervised Learning models require labeled data

Supervised learning usually requires plenty of labeled data
It is usually expensive to have a large set of labeled data

Unlabeled data is often abundant with no or low cost

» Learning from both labeled and unlabeled data

Labeled training data: £ = {(x(n)»)’(n))}l;:l
L+U

Unlabeled data available during training: U = {x(n)}n=L+1

Sharif University
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Semi-supervised learning: example

labeled data
----- decision boundary (labeled)
(O unlabeled data
decision boundary (labeled and unlabeled)

_A |
o(ll oop @Q O
= | 0 1 X

Zhu, Semi-Supervised Learning Tutorial, ICML, 2007.
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-2t

=3

-4+

=)
T

-2t

-3t

-4t

++

3

-1}

-2}
-3t

-4}

Zhu, Semi-Supervised Learning Tutorial, ICML, 2007.
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Semi-supervised generative model

» Start from MLE 0 = 7, u, 2] on L = {(x(n)’y(n))}le

» Repeat:
E-step: compute p(y™|x™ @) forn=L+1ton=L+U

M-step: compute the parameters 0 = [m,u, 2] considering
both labeled data and unlabeled data using the distribution
found on their labels in the E-step

Sharif University
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Resource

* C. Bishop, “Pattern Recognition and Machine
Learning”, Chapter 9.
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Example
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[Gausshix =] RingPts | Randompts | clearPts | initkemels |[3 =] [Emstor =]

title

Sharif University
of Technology



EM for GMM

M step: details
° E

)[logp(X,ZIH)]
§ p(216) = p(X1Z,6)P(2]6)

N p(X,Z|0) = U p x{D, Z(t)le)
— ZEZ P(Z|X HOId) [log (Hp(x(l)lz(l) B)P(Z |1l')>

Z~P(

=1
1\} (l) (l)
= z Ez(i)~p(z X, Hold) logl—[ 1—[ N(x(l)|”] ,Z] ) j :
=1 =1 j=
N K
Zzy’l log (l)l Y =1n,%; )”1)
i=1j=1

title




EM for GMM: M step details 6 = [z, po¥¢, 54

Q(0;0°¢) =E )[logP(X,ZIO)]

z~P(Z|X, geld




EM algorithm: general

» Expectation Maximization (EM) seeks to estimate:

6 = argmax Ez-p(z)x,0)log P(X, Z|6)]

» X:observed variables
» Z:Unobserved variables

» O:parameters

EM find the maximum likelihood parameters in cases
where the models involve latent variables Z in addition to
unknown parameters 8 and known data observations X.

CAR) Sharif University
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. p(X,Z|0) = p(Z|X,0)p(X|0)
logp(X,Z]0) = logp(Z|X, 0) + logp(X|6)
logp(X,Z]6) —logp(Z|X, 0) = logp(X|0)

Ep(Z|X, Bold)[logp(Xr Zle)] - Ep(Z|X, BOld) [logp(ZlX, 0)] = logp(Xle)
= logp(X|6) = Q(6;6°°) —E 71y gota[logp(Z|X, 6)]

logp(X|0™") — log p(X|0°'%)
= Q(6mv;0°4) — Q(6°4;6°'4) + E,(z|x, eold)[log p(Z|x,0°4)]
- Ep(Z X, Bold) [logp(Z]X, 6™¢")]

onev — argmax Q(e, eold) = Q(Onew; eold) > Q(BOld; eold)
6

Ep(Z|X, eold)[logp(Z|X, gold)] — Ep(ZlX, eold)[logp(Z|X, gneW)]
= KL(p(Z|X,6°?)|p(Z|X,6™")) = 0

0 it
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KL divergence

» Kullback-Leibler divergence between p and q:

_ p(x)
Dk, (pllq) = fp(x) logq(x) dx

» A result from information theory: For any p and ¢
D (pllg) = 0

Dk (p|lg) =0 ifand only if p = g
Dy is asymmetric

Sharif University
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K-means algorithm

Iterate until convergence:
E step:
: 2
- — ] l _ .
1 if k= arg}mm”x“ u]”

0 otherwise

Z?=1 TigX @
Hi =

n

* Choose an initial setting for cluster prototypes i, ...

title
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